Skip to main content

NCERT Solutions For Class 10 Maths Chapter 1 Real Numbers

 NCERT Solutions For Class 10 Maths Chapter 1 Real Numbers



EXERCISE 1.1

2. Show that any positive odd integer is of form 6q + 1, or 6q + 3, or 6q + 5, where q is some integer.
Solution
Let `a` be the positive integer and `b` = 6
Applying Euclid's division lemma
`a = 6q + r, 0 ≤ r < 6`
Case I  If   `r = 0` then `a = 6q`
Case II   If  `r = 1` then `a = 6q +1`
Case III   If  `r = 2` then `a = 6q +2`
Case IV   If   `r = 3` then `a = 6q + 3`
Case V If   `r = 4` then `a = 6q + 4`
Case VI  If   `r = 5` then `a = 6q + 5`
`therefore` Case II `a = 6q +1`, Case IV `a = 6q + 3` , Case VI   `a = 6q + 5` are odd integers. 

4. Use Euclid’s division lemma to show that the square of any positive integer is either of the form `3m` or `3m + 1` for some integer `m.`
Solution
Let `a` be the positive integer and `b = 3`
Applying Euclid's division lemma
`a = 3q + r , 0 ≤ r < 3`
Case I  If  `r = 0` then `a = 3q`
`a^2 = (3q)^2 = 9q^2 = 3(3q^2) = 3m`  where `m = 3q^2`

Case II  If  `r = 1` then `a = 3q +1`
`a^2 = (3q + 1)^2 = 9q^2 + 6q + 1 = 3q(3q +2) + 1 = 3m + 1`, where `m = q(3q + 2)`

Case III  If  `r = 2` then `a = 3q +2`
`a^2 = (3q + 2)^2 = 9q^2 + 12q + 4` 
`=  9q^2 + 12q + 3 + 1`
`= 3(3q^2 + 4q + 1) + 1 =3m + 1`, where `m =  3q^2 + 4q + 1`

Hence, the square of any positive integer is either of the form `3m` or `3m + 1` for some integer `m.`

EXERCISE 1.2

1. Express each number as a product of its prime factors:
(i) 140   (ii) 156   (iii) 3825   (iv) 5005   (v) 7429

Solutions:
(i) 140
By prime factorisation, we get 
`140 = 2^2 × 5 × 7`

(ii) 156
By prime factorisation, we get 
 `156 = 2^2 × 3 × 13`

(iii) 3825
By prime factorisation, we get 
`3825 = 3^2 × 5^2 × 17`

(iv) 5005
By prime factorisation, we get 
 `5005 = 5 × 7 × 11 × 13`

(v)  7429
By prime factorisation, we get 
`7429 = 17 × 19 × 23`

2. Find the LCM and HCF of the following pairs of integers and verify that LCM × HCF = product of the two numbers.
(i) 26 and 91   (ii) 510 and 92   (iii) 336 and 54

Solutions:
(i) 26 and 91
By prime factorisation, we get 
`26 =  2 × 13`
`91 =  7 × 13`
`therefore LCM (26, 91) = 2 × 7 × 13 = 182`
`HCF (26, 91) = 13`
`HCF(a, b) × LCM (a, b) = a × b`
`HCF(26, 91) × LCM (26, 91) = 26 × 91` 
`13 × 182 = 26 × 91 = 2366`
Hence, verified. 

(ii) 510 and 92
By prime factorisation, we get 
`510 = 2 × 3 × 5 × 17`
`92 = 2^2 × 23`
`LCM (92, 510) = 2^2 × 3 ×  5 × 17 × 23 = 23460`
`HCF (92, 510) = 2`
`HCF(a, b) × LCM (a, b) = a × b` 
`HCF(92, 510) × LCM (92, 510) = 92 × 510`
`2 × 23460 = 92 × 510 =46920`
Hence, verified. 

 (iii) 336 and 54
By prime factorisation, we get 
`336 = 2^4 × 3 × 7`
`54  = 2 × 3^3`
`LCM (54, 336) = 2^4 × 36^3 ×  7 = 3024`
`HCF (54, 336) = 2× 3 = 6`
`HCF(a, b) × LCM (a, b) = a × b` 
`HCF(54, 336) × LCM (54, 336) = 6 × 3024`
`6 × 3024 = 54 × 336 = 18144`
Hence, verified. 

3. Find the LCM and HCF of the following integers by applying the prime factorisation method.
(i) 12, 15 and 21   (ii) 17, 23 and 29   (iii) 8, 9 and 25

Solutions:
(i) 12, 15 and 21
Prime factorisation
`12 = 2^2  × 3`
`15 = 3  × 5`
`21 = 3  × 7`
`therefore LCM (12, 15, 21) = 2^2  × 3  × 5  × 7 = 420`
`HCF (12, 15, 21) = 3`










Work in progress 








Comments

  1. Awesome notes πŸ‘ŒπŸ‘ŒπŸ‘ŒπŸ‘ŒπŸ‘πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘

    ReplyDelete
  2. Well done πŸ‘πŸ‘πŸ‘ŒπŸ‘πŸ‘πŸ‘ŒπŸ‘πŸ‘Œ

    ReplyDelete

Post a Comment